Методы и алгоритмы принятия решений (МИАПР)

1 сообщение / 0 новое
admin
Аватар пользователя admin
Методы и алгоритмы принятия решений (МИАПР)

3. МЕТ ОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

В соответствии с учебным планом специальности 2-25 01 10 «Коммерческая деятельность» по предмету «Методы и алгоритмы принятия решений» учащиеся заочного отделения должны выполнить одну контрольную работу7.

К выполнению контрольной работы рекомендуется приступить после изучения теоретического материала в соответствии с программой, проработки вопросов для самоконтроля и приведенных в разделе 5 пособия примеров выполнения заданий контрольной работы. Литература для изучения указана в каждой теме содержания предмета.

Контрольная работа выполняется либо рукописным способом в ученической тетради, либо машинописным способом на листах А4 (шрифт 12-14 пт, гарнитура Times New Roman). На титульном листе контрольной работы указываются: наименование учебного заведения, шифр, специальность, номер учебной группы, фамилия, имя, отчество учащегося, номер варианта и домашний адрес.

Номер варианта определяется в соответствии с последней цифрой индивидуального шифра учащегося. Практическое решение задач контрольной работы необходимо сопроводить подробными комментариями.

Контрольная работа представлена в десяти вариантах, по три задания в каждом.

4. ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ

Задание 1

Решить задачу линейного программирования графическим методом.

При этом необходимо:

1)            свести исходные данные в таблицу, удобную хчя построения математической модели;

2)            составить математическую модель задачи;

3)            найти оптимальное решение задачи.

Вариант О

На каждую автоколонну из 10 машин, направленных хтя вывоза груза из района А, выделяются 4 авторемонтных мастерских, 3 машины технической помощи и 2 мотоцикла. На такую же автоколонну для вывоза груза из района В выделяются 3 авторемонтных мастерских, 1 машина технической помощи. Одна колонна из района А вывозит 2 тыс. т груза, из района В - 1 тыс. т груза. Какое количество автоколонн следует направить в каждый район, чтобы обеспечить максимальный вывоз груза, если имеются 200 машин, 20 авторемонтных мастерских, 10 машин технической помощи и 16 мотоциклов?

Вариант 1

Трикотажная фабрика производит свитеры и кофточки, используя шерсть, силон и нитрон, запасы которых соответственно равны 900, 400 и 300 кг. Количество каждой пряжи на изготовление 10 свитеров составляет: 4, 2 и 1 кг, а на 10 кофточек - 2, 1 и 1 кг. Прибыль от реализации 10 ед. продукции составляет 6 и 5 ден. ед. Найти план выпуска, максимизирующий прибыль.

Вариант 2

Для кондитерской фабрики требуется рассчитать оптимальный план выпуска карамели. Весь ассортимент карамели разделен на 2 однородные группы, условно обозначенные К\ и К2. Для производства карамели требуются сахарный песок, патока и фруктовое пюре. Запасы этих видов сырья соответственно равны 300, 140 и 90 т. Другие виды сырья, входяшие в готовый продукт в небольших количествах, не учитываются. Расход сырья на 1 т карамели группы К\ составляет: 0,6 т сахарного песка и 0,2 т патоки; группы К2 - 0,5 т сахарного песка, 0,3 т патоки и 0,3 т фруктового пюре. Уровень прибыли на единицу каждого вида выпускаемой карамели (в ден. ед. за 1 т) равен хтя К\ - 1000, К2 -1500. Определить оптимальный план выпуска карамели, чтобы фабрика получила максимальную прибыль.

Вариант 3

В опытном хозяйстве установили, что откорм животных выгоден тогда, когда животное будет получать в дневном рационе не менее 6 ед. питательного вещества А, не менее 12 ед.

вешества В и не менее 4 ед. вещества С. Для кормления животных используются два вила корма: 1 кг корма I содержит 2 ел. вешества А и 2 ел. вещества В\ 1 кг корма II - 1 ел. вещества А, 4 ел. вещества В и 4 ед. вешества С. Цена 1 кг корма I равна 50 лен. ед., корма П - 60 лен. ел.

Составить математическую модель задачи и на ее основе установить, сколько каждого корма необходимо расходовать ежедневно, чтобы затраты на него были минимальными.

Вариант 4

Предприятие производит сборку автомашин двух марок: А\ и А2. Для этого требуются следующие материалы: 5! - комплекты заготовок металлоконструкций в количестве Z>i = 17 шт., необходимые лтя сборки автомашин марок Л i и А2 (соответственно 2 и 3 ед.); S2 - комплекты резиновых изделий в количестве Ь2 = = 11 шт. (соответственно 2 и 1 ед.); 53 - двигатели с арматурой и электрооборудованием в количестве Ь$ = 6 комплектов, необходимых по одному для каждой автомашины марки А\, S* - двигатели с арматурой и электрооборудованием в количестве bi =

= 5 комплектов, необходимых по одному лтя каждой автомашины марки А2. Стоимость автомашины марки .4i равна с\ = 7 тыс. ден. ед., а стоимость марки автомашины А2 - с2- 5 тыс. ден. ед. Определить план выпуска, составляющий максимальную выручку.

Вариант 5

Из двух видов сырья необходимо составить смесь, в состав которой должны входить не менее 6 ед. химического вещества К., не менее 12 ед. вещества L и не менее 4 ед. вешества М. Количество единиц химических веществ, содержащихся в 1 кг смеси вида 1, соответственно равно 2, 2 и 3; вида 2 - 1,4 и 4.

Известно, что цена сырья вида 1 за 1 кг равна 5 ед., а цена сырья вида 2 - 6 ед. за 1 кг. Составить смесь, содержащую необходимое количество веществ данного вида и имеющую минимальную себестоимость.

Вариант 6

При перевозке 300 контейнеров типа 1, 500 контейнеров типа 2 и 30 контейнеров типа 3 используются 2 вида автомашин А и В. На автобазе имеются 6 автомашин вида А и 10 - вида В. Автомашина вида А вмещает 50 контейнеров типа 2 и 9 контейнеров типа 3;

автомашина вила В - 100 контейнеров типа 1, 100 контейнеров типа 2 и 3 контейнера типа 3.

На один рейс по определенному маршруту затраты составляют: при использовании машин Л и В соответственно - 2 лен. ел. и 1,8 лен. ел. Требуется определить необходимое количество автомашин вила А и В, чтобы стоимость перевозки контейнеров всех типов была минимальной.

Вариант 7

Фирма по переработке картофеля производит 3 вила продукции: картофельные дольки, кубики и хлопья. Анализ загруженности оборудования и спроса на рынке показывает возможность произвести и сбыть до 1,8 т долек, 1,2 т кубиков и 2,4 т хлопьев. Необходимый для переработки картофель фирма закупает у двух поставщиков. Из 1 т картофеля, закупленного у поставщика 1, получается: долек - 0,2 т; кубиков - 0,2 т; хлопьев - 0,3 т. Из 1 т картофеля, закупленного у поставщика 2, получается: долек - 0,3 т; кубиков - 0,1 т; хлопьев - 0,3 т.

Прибыль (доход от реализации готовой продукции за вычетом стоимости сырья) от продажи продукции, произведенной из картофеля поставшика 1, составляет 5 ден. ед. за 1 т; от продажи продукции, произведенной из картофеля поставщика 2,-6 ден. ед.

Требуется определить, какое количество картофеля надо приобрести у каждого поставшика, чтобы обеспечить наибольшую относительную прибыль с учетом возможности сбыта готовой продукции.

Вариант S

Для сохранения нормальной жизнедеятельности человек должен в сутки потреблять не менее 120 ед. белков, не менее 70 ед. жиров и не менее 10 ед. витаминов. Содержание их в продуктах Pi и Р2 соответственно равно 0,2, 0,75, 0; 0,1, 0,1, 0,1. Стоимость одной единицы продукта PL равна 2 ден. ед., Р2 -3 ден. ед. Требуется организовать питание таким образом, чтобы его стоимость была минимальной, а организм получал необходимое количество питательных веществ.

Вариант 9

Из Минска в Гродно необходимо перевезти оборудование трех типов: 84 ед. типа I; 80 ед. типа П; 150 ед. типа III. Для этого используют два вида транспорта А и Б. Количество оборудования каждого типа на транспорт А составляет: 3, 4 и 3 ед., на транспорт Б: 2, 1 и 13 ед. Затраты на перевозку транспортом А равны 8 ед., транспортом Б - 12 ед. Составить такой план перевозок, чтобы транспортные расходы были минимальными.

Задание 2

На предприятии имеется возможность выпускать п видов продукции Ilj(j = 1 ...п). При ее изготовлении используются ресурсы Рь Р2 и Р3. Размеры допустимых затрат ресурсов ограничены соответственно величинами b\, bi и bi. Расход ресурса *-го (/ = 1...3) вида на единицу продукции j-го вида составляет а „ единиц. Цена единицы продукции j-го вида равна

с j ден. ед.

Необходимо:

1)            симплексным методом найти план выпуска продукции по видам с учетом имеющихся ограниченных ресурсов, который обеспечивал бы предприятию максимальный доход;

2)            дать содержательный ответ, раскрыв экономический смысл всех переменных, участвующих в решении задачи;

3)            сформулировать в экономических терминах двойственную задач)’;

4)            составить математическую модель двойственной задачи;

5)            используя решение исходной задачи и соответствие между двойственными переменными, найти компоненты оптимального плана двойственной задачи - двойственные оценки

У* 0 = 1-3);

6)            указать наиболее дефицитный и недефицитный ресурс, если таковые имеются;

7)            сформулировать в экономических терминах значения двойственных переменных и дополнительных двойственных оценок.

ЗАКАЗАТЬ МИАПР

Категории: