Результаты

Гость (не проверено) got 100 of 100 possible points.
Общий результат: 100 %

Замечательно! Но надо стараться, и продемонстрировать такие же знания на реальном Цт!

Результаты

Результат 1 из 1

Вопрос:

Вопрос с множественным выбором

А1. Укажите номер рисунка, на котором изображён равнобедренный треугольник:

2

1

5

3

4

Ответ:

4

1

5

2

3

Результат 2 из 2

Вопрос:

Вопрос с множественным выбором

А2. Укажите верное равенство:

2

5

1

3

4

Ответ:

2

1

5

3

4

Результат 2 из 2

Вопрос:

Вопрос с множественным выбором

А3. Сумма всех натуральных делителей числа 20 равна:

41

42

21

9

7

Ответ:

42

41

21

7

9

Результат 2 из 2

Вопрос:

Вопрос с множественным выбором

А4. Даны квадратные уравнения:
1) 3
x² + 12x + 12 = 0;                                           2) 7x² - 3x - 2 = 0;
3) 5
x² + 10x + 5 = 0;                                             4) 12x² + 4x + 5 = 0;
5) 2
x² - 3x - 5 = 0.
Укажите уравнение, которое не имеет корней.

5

1

2

4

3

Ответ:

5

3

1

4

2

Результат 2 из 2

Вопрос:

Вопрос с множественным выбором

А5. Если 10²·α = 537,61278, то значение α с точностью до сотых равно:
1) 5,37;   2) 53,76;   3) 5,38;   4) 53761,28;   5) 5376,13.

5376,13

53,76

53761,28

5,37

5,38

Ответ:

5,37

53761,28

5,38

53,76

5376,13

Результат 2 из 2

Вопрос:

Вопрос с множественным выбором

А6. Число 154 является членом арифметической прогрессии 4, 7, 10, 13, … . Укажите его номер.
 

49

47

54

56

51

Ответ:

51

54

49

47

56

Результат 2 из 2

Вопрос:

Вопрос с множественным выбором

А7. Решите неравенство |-x| ≥ 3.

x₁ = - 3, x₂ = 3

x є [- 3; 3]

x є (-∞; - 3]

x є (-∞; - 3]U[3; + ∞)

x є [3; + ∞)

Ответ:

x є (-∞; - 3]

x є (-∞; - 3]U[3; + ∞)

x₁ = - 3, x₂ = 3

x є [3; + ∞)

x є [- 3; 3]

Результат 2 из 2

Вопрос:

Вопрос с множественным выбором

А8. Вычислите:

0,6

2,8

28

0,28

60

Ответ:

0,28

0,6

2,8

28

60

Результат 2 из 2

Вопрос:

Вопрос с множественным выбором

А9. Площадь круга равна 169π. Диаметр этого круга равен:

13

169

26π

26

13π

Ответ:

26

169

13π

13

26π

Результат 3 из 3

Вопрос:

Вопрос с множественным выбором

А10. Найдите наименьший положительный корень уравнения


 

π/12

π/3

π/8

π/4

π/6

Ответ:

π/8

π/4

π/12

π/3

π/6

Результат 3 из 3

Вопрос:

Вопрос с множественным выбором

А11. Четырёхугольник MNPK, в котором угол N = 136⁰, вписан в окружность.

44

90

180

68

136

Ответ:

180

68

136

90

44

Результат 3 из 3

Вопрос:

Вопрос с множественным выбором

А12. На одной чаше уравновешенных весов лежат 3 яблока и 1 груша, на другой – 2 яблока, 2 груши и гирька весом 20 г. Каков вес одной груши (в граммах), если все фрукты вместе весят 780 г? Считайте все яблоки одинаковыми по весу и все груши одинаковыми по весу.
 

85

105

75

95

90

Ответ:

105

95

90

75

85

Результат 3 из 3

Вопрос:

Вопрос с множественным выбором

А13. Прямая а, параллельная плоскости α, находится от неё на расстоянии 3. Через прямую а проведена плоскость β, пересекающая плоскость α по прямой b и образующая с ней угол 60⁰. Найдите площадь четырёхугольника ABCD, если A и B − такие точки прямой а, что AB = 2, а C и D − такие точки прямой b, что CD = 5.

4

3

5

1

2

Ответ:

2

1

5

4

3

Результат 3 из 3

Вопрос:

Вопрос с множественным выбором

А14. Упростите выражение

2·3x

27x - 5

3x + 5

3x - 5

Ответ:

3x - 5

2·3x

27x - 5

3x + 5

Результат 3 из 3

Вопрос:

Вопрос с множественным выбором

А15. Корень уравнения

 

 

1

4

2

3

5

Ответ:

4

5

1

3

2

Результат 3 из 3

Вопрос:

Вопрос с множественным выбором

А16. Какая из прямых:
1)
y = 3;   2) y = 4,8;   3) y = 0;   4) y = - 4;   5) y = - 2,7
пересекает график функции
y = (1/2)x² + 2x + 5 в двух точках?

4

2

1

3

5

Ответ:

2

1

5

3

4

Результат 4 из 4

Вопрос:

Вопрос с множественным выбором

4

3

1

2

5

Ответ:

2

5

1

3

4

Результат 4 из 4

Вопрос:

Вопрос с множественным выбором

А18. Наименьшее целое решение неравенства  lg(x² - 4x - 5) - lg(x + 1) ≤ lg3
равно:

8

-2

5

6

-1

Ответ:

-2

6

5

-1

8

Результат 3 из 3

Вопрос:

Вопрос с множественным выбором

В1. Если в правильной четырёхугольной пирамиде высота равна 3, а площадь диагонального сечения равна 9, то её объём равен …

32

20

18

40

36

Ответ:

32

18

36

40

20

Результат 3 из 3

Вопрос:

Вопрос с множественным выбором

В2. Найдите количество всех целых решений неравенства

(16x-x3) / (5x)>0

 

7

10

6

1

2

Ответ:

6

1

10

2

7

Результат 4 из 4

Вопрос:

Вопрос с множественным выбором

В3. Точки А(2; 2), B(7; 5) и C(8; 5) − вершины трапеции ABCD (AD||BC). Найдите сумму координат точки D, если BD =

12

20

16

14

10

Ответ:

20

16

14

12

10

Результат 4 из 4

Вопрос:

Вопрос с множественным выбором

В4. Найдите периметр правильного шестиугольника, меньшая диагональ которого равна 11

70

88

50

66

60

Ответ:

66

88

50

70

60

Результат 4 из 4

Вопрос:

Вопрос с множественным выбором

В5. Найдите произведение корней уравнения 3x² + 81 = 22-x²·6x²

3

9

12

-6

-3

Ответ:

-3

3

12

9

-6

Результат 4 из 4

Вопрос:

Вопрос с множественным выбором

В6. Площадь прямоугольника ABCD равна 55. Точки M, N, P, Q – середины его сторон. Найдите площадь четырёхугольника, заключённого между прямыми AN, BP, CQ, DM.
 

20

16

11

18

10

Ответ:

16

10

20

18

11

Результат 5 из 5

Вопрос:

Вопрос с множественным выбором

В7. Решите уравнение и найдите сумму его корней

36

6

9

8

-12

Ответ:

8

-12

6

36

9

Результат 5 из 5

Вопрос:

Вопрос с множественным выбором

В8. Найдите значение выражения 8cos(α + π/4),  если sin2α = 23/32,  2α є (π/2; π)

-3

20

10

-5

30

Ответ:

-5

-3

10

20

30

Результат 5 из 5

Вопрос:

Вопрос с множественным выбором

В9. Найдите сумму целых значений x, принадлежащих области определения функции
                                                         
y = logₓ₋₃(7 + 6x - x²)

20

10

11

16

12

Ответ:

20

11

16

12

10

Результат 5 из 5

Вопрос:

Вопрос с множественным выбором

В10. Прямоугольный треугольник с катетами, равными 1 и 2    , вращается вокруг оси, содержащей его гипотенузу. Найдите значение выражения   9V/π, где V − объём фигуры                                                                     
 

8

16

10

20

12

Ответ:

20

8

10

12

16

Результат 6 из 6

Вопрос:

Вопрос с множественным выбором

В11. Из двух растворов с различным процентным содержанием спирта массой 200 г и 300 г отлили по одинаковому количеству раствора. Каждый из отлитых растворов долили в остаток другого раствора, после чего процентное содержание спирта в обоих растворах стало одинаковым. Найдите, сколько раствора (в граммах) было отлито из каждого раствора

250

150

120

200

180

Ответ:

150

250

200

180

120

Результат 6 из 6

Вопрос:

Вопрос с множественным выбором

В12. Найдите произведение корней уравнения  x -=(x-5)/(2x+10)

12

150

-125

120

240

Ответ:

-125

120

240

12

150